Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(2): e31845, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359636

RESUMO

Among chromatin remodeling factors, the ISWI family displays a nucleosome-enhanced ATPase activity coupled to DNA translocation. While these enzymes are known to bind to DNA, their activity has not been fully characterized. Here we use TEM imaging and single molecule manipulation to investigate the interaction between DNA and yeast Isw1a. We show that Isw1a displays a highly cooperative ATP-independent binding to and bridging between DNA segments. Under appropriate tension, rare single nucleation events can sometimes be observed and loop DNA with a regular step. These nucleation events are often followed by binding of successive complexes bridging between nearby DNA segments in a zipper-like fashion, as confirmed by TEM observations. On nucleosomal substrates, we show that the specific ATP-dependent remodeling activity occurs in the context of cooperative Isw1a complexes bridging extranucleosomal DNA. Our results are interpreted in the context of the recently published partial structure of Isw1a and support its acting as a "protein ruler" (with possibly more than one tick).


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , DNA Fúngico/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Microscopia Eletrônica de Transmissão , Ligação Proteica , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Especificidade por Substrato
2.
FEBS J ; 278(19): 3596-607, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21810177

RESUMO

Through its capability to transiently pack and unpack our genome, chromatin is a key player in the regulation of gene expression. Single-molecule approaches have recently complemented conventional biochemical and biophysical techniques to decipher the complex mechanisms ruling chromatin dynamics. Micromanipulations with tweezers (magnetic or optical) and imaging with molecular microscopy (electron or atomic force) have indeed provided opportunities to handle and visualize single molecules, and to measure the forces and torques produced by molecular motors, along with their effects on DNA or nucleosomal templates. By giving access to dynamic events that tend to be blurred in traditional biochemical bulk experiments, these techniques provide critical information regarding the mechanisms underlying the regulation of gene activation and deactivation by nucleosome and chromatin structural changes. This minireview describes some single-molecule approaches to the study of ATP-consuming molecular motors acting on DNA, with applications to the case of nucleosome-remodelling machines.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/ultraestrutura , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Cromatina/metabolismo , Cromatina/ultraestrutura , DNA/química , DNA/metabolismo , Microscopia de Força Atômica/instrumentação , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Transmissão/instrumentação , Microscopia Eletrônica de Transmissão/métodos , Conformação de Ácido Nucleico , Pinças Ópticas
3.
Curr Opin Struct Biol ; 19(5): 615-22, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19783425

RESUMO

Magnetic traps provide a simple technique to pull and twist a variety of biomolecules and monitor the resulting change in extension. They have been used with great success to investigate the interaction of stretched and supercoiled DNA and DNA fibers (e.g. chromatin) with a great variety of enzymes. In this small review we will address their recent use in the study of topoisomerases, gyrase, DNA translocases and various structural proteins.


Assuntos
Bioquímica/métodos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Magnetismo , Proteínas/química , Proteínas/metabolismo , Animais , Enzimas/metabolismo , Humanos , Ligação Proteica
4.
Mol Cell ; 21(3): 417-25, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16455496

RESUMO

The Snf2 family represents a functionally diverse class of ATPase sharing the ability to modify DNA structure. Here, we use a magnetic trap and an atomic force microscope to monitor the activity of a member of this class: the RSC complex. This enzyme caused transient shortenings in DNA length involving translocation of typically 400 bp within 2 s, resulting in the formation of a loop whose size depended on both the force applied to the DNA and the ATP concentration. The majority of loops then decrease in size within a time similar to that with which they are formed, suggesting that the motor has the ability to reverse its direction. Loop formation was also associated with the generation of negative DNA supercoils. These observations support the idea that the ATPase motors of the Snf2 family of proteins act as DNA translocases specialized to generate transient distortions in DNA structure.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , DNA/metabolismo , DNA/ultraestrutura , DNA Topoisomerases/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Substâncias Macromoleculares , Microscopia de Força Atômica , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...